Tag Archives: stepper motor gearbox

China high quality NEMA 17 Gear Reducer Stepper Motor with Planetary Gearbox dc motor

Product Description

Nema 17 gear reducer stepper motor with planetary gearbox

Gearbox Dia: 36mm
Stepper Dia: 42mm
Stepper Motor Length: 34mm, 40mm, 48mm
Output shaft diameter: φ 8mm
Shaft length: Can be customzied

Specification:

Note: It’s only the typical data, The motor can be customized if you have special requirment

.About CZPT Company
HangZhou CZPT Co. Ltd is a manufacturer and exporter of virious of motors, 
Our Product range are: 
DC Brush motor: 6-130mm diameter, 0.1-1500W output power. 
Brushless DC Motor: 28-110mm, 5-800W output power 
DC Spur Gear Motor: 12-110mm diameter, 0.1-300W output power 
DC Planeary Gear Motor: 10-82mm diameter, 0.1-200W output power 
Stepper Motor: NEMA 08 to NEMA 43, Can contact with gearox and lead screw
AC Gear Motor: 42 to 104mm diameter, 6-200 output power 

Compare with other competitors, Our advantages are: 

1) High Quality Guarantee: 11 years experiences in this field makes us have mature manufacturing process, Most of motors have CE, RoHS certificates.
2) Experience: Till Augest, 2016, We had export our goods to 77 different countries like US, Germany, UK, Japan, Brizal,Russia and so on.
3) Competitive Price: We have a very high competitive ability of the list prices based on low cost labour force in China. 
4) Good Service: CZPT sales are professional and with good attitude, We will response with our customer within 24 hours(Holiday excepted), So you don’t need way about can’t not find the person when have agent things. 

  • 5 MOQ: Small Orders Accepted
    6) On Time Delivery: 7-15 working days lead time for normal motors, Custmoized motor lead time are also less than 20 working days.
    7) Customized service: Our experienced R&D team can support customized motor if necessary.

 Production Equipment:

Customer Visit and Fair 

Certificates 

FAQ
1. Can you make the motor with customized requirement ?
YES. We have experienced R&D capability and great engineers, Their experience and innovation capability can support customized project.
2.Can you provide the samples?
YES. We can provide the samples, The delivery time is about 7-15 days according to which kind of motor you want
3.What is your MOQ?
It’s accordingly to the motor type you order, Our MOQ for gear motor can even 1pc.
4. Do you have the item in stock?
Sorry we don’t have the item in stock, , Motor have hundreds of different requirement such as voltage, speed, torque, shaft dimension and so on, So it’s hard to prepared samples
5. Do you provide technology support?
YES. Our company have strong R&D capability, we can provide technology support if you need.
6.How to ship to us?
TNT, DHL,UPS or FEDEX,AMERX or other express company as you want. . 
7.How to pay for the order ?
We accept T/T,Western union or paypal or cash.
 8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.
9. Can I come to your company to visit?
YES, you can come to our company to visit at any working days, Welcome to visit our company.
10. How do contact us ?
 Please send an inquiry or send me a email directly, My email address can be find in our company website

 

Application: Printing Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control
Type: Magnetic-Electric
Samples:
US$ 35/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China high quality NEMA 17 Gear Reducer Stepper Motor with Planetary Gearbox   dc motor	China high quality NEMA 17 Gear Reducer Stepper Motor with Planetary Gearbox   dc motor
editor by CX 2023-05-06

China Factory Price 57mm 9~30n. M Output Torque Planetary Gearbox Stepper Motor NEMA 23 with Hot selling

Product Description

 

Solution Description

Planetary Gear Stepping Motor :
Precision high-end upgrade with Nema8, Nema 11, Nema14, Nema 17, Nema23, Nema 24 
stepper motor low noise, low vibration, firm and durable. Increase torque at low speed.
Reduction ratio:1:3.7 , 1:5.2 , 1:14 , 1:19 ,1:27 ,1:51 , 1:71 ,1:100 ,1:139 , 1:189 ,1:264 , 1:369 ,And 48 hours delivery , in stock .

Software:
Automation control, medical equipment, textile machinery,and packaging machinery fields. Not only in the field of the automation industry, it also has a good use status in the home.   Products with low speed and inertia are often seen: electric curtains, electric shutters, etc
 

Product Parameters

Planetary Equipment Box Specification:

Housing Material Metallic
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Enjoy of Shaft (near to Flange) ≤0.08mm
Axial Perform of Shaft ≤0.4mm
Backlash at No-load 1 stage≤1°,2stage≤1.2°,3stage≤1.5°

57HS Hybrid Stepping Motor Specs:
 

Model No. Step Angle Motor Size(L1) Rated Present Resistance Inductance Holding Torque # of Sales opportunities Rotor Inertia Mass Max.Equipment Ratio
Voltage /Phase /Period /Period
One Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 one.8 fifty five one.seven two. .85 2.5 950 4 200 .sixty four ≤1:187

57HS5471 Planetary Gearbox Requirements:
Reduction ratio three.six four.twenty five 13 15 18 23 47 55 65 seventy seven ninety six 121 153 187
Whole Top(L1+L2) (mm) 92.8 ninety two.8 104.four 104.4 104.4 104.4 a hundred and fifteen.8 115.8 one hundred fifteen.eight one hundred fifteen.8 a hundred and fifteen.eight 115.8 126.9 126.nine
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Whole Bodyweight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Size(L2)   (mm) 37.8 49.four 60.eight 71.nine
Efficiency 90% 81% 73% 66%

 

Detailed Photos

Parameters of Drawing

 

 

Organization Profile

ZheJiang UMot Technology Co., Ltd. specializes in R&D and product sales of stepper motors, servo motors, linear modules and associated movement control merchandise, customizing and planning large-quality motor products for users with unique wants close to the globe, and supplying overall remedies for movement management systems. Merchandise are exported to far more than 30 nations and areas such as the United States, Germany, France, Italy, Russia, and Switzerland. The company’s main items and method design and style have been widely utilized in automation handle, precision devices, health care equipment, wise residence, 3D printing and numerous other fields.
Our business has been acknowledged as a higher-tech enterprise by appropriate departments, has a total top quality management technique, has acquired ISO9001, CE, RoHs and other relevant certifications, and holds a quantity of electrical patent certificates. “Focus, Professionalism, Focus” in the area of automation of motor R&D and method management answers is the company’s business function. “Be your most trusted companion” is the company’s services philosophy. We have always been aiming to “make first-class goods with specialist technologies”, hold pace with the moments, innovate continuously, and give far more users with far better products and companies.

FAQ

one. Delivery approach:
one)International Specific shipping and delivery DHL&FEDEX &UPS&TNT& 7-10days
2)Shipping and delivery by air 7-ten days
three)delivery by sea, supply time relies upon on the spot port.

two. Specialized Assistance:
We can give you with specialist specialized support. And our products quality assure is 6 months. Also, we acknowledge products personalized.

three. Why must you acquire from us, not from other suppliers?
Professional a single-to-1 motor tailored. The world’s massive business of choice for higher-good quality suppliers. ISO9001:2008 top quality management technique certification, by way of the CE, ROHS certification.

four. How to select versions?
Before getting, make sure you get in touch with us to confirm design No. and specs to avoid any misunderstanding.

five. Are you a manufacturing facility?
Of course, we are a factory, and we make stepper motor/driver, Servo motor/driver.

 

 


/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Factory Price 57mm 9~30n. M Output Torque Planetary Gearbox Stepper Motor NEMA 23     with Hot selling	China Factory Price 57mm 9~30n. M Output Torque Planetary Gearbox Stepper Motor NEMA 23     with Hot selling
editor by CX 2023-03-30

China 20mm Sintering Metal Planetary Gearbox 3V-24V Brush / Brushless / Stepper Gear Motor with Good quality

Item Description

We are a manufacturing facility specialized in steel components components & steel equipment motor.
We providers with ODM/OEM gearbox style and advancement , gearmotors manufacture.

A planetary gearbox is a gearbox with the input shaft and output shaft aligned it provides high torque transmission with good stiffness and minimal noise , in a a lot more compact foot print than other gearbox kinds . It can source a great deal of velocity reduction and torque in a modest package deal with the set axis .
A planetary gear set is produced up of 3 varieties of gears , a sunlight gear , planet gears and a ring gear . The sunlight gear at higher velocity is situated at the heart of the gears , and transmits torque to the world gears which are typically mounted on the moveable carrier .The world gears close to the central axis rotation ,mesh with the solar equipment and an outer ring equipment . As all the world carriers turns , it delivers reduced-pace, substantial-torque output .
Description:
Merchandise Name : 20mm Speed reducer / Gearmotor / planetary gearbox with brushed / brushless electric 3V-24V motors
Gearbox Sort: Planetary
Materials: Sintered Metal
Gear Ratio : 5:1 , 10:1 , 20:1 , 25:1 , 30:1 , forty:1 , fifty:1 , sixty:1 ,70:1…100:1 , a hundred and fifty:1…  optional
Gearbox diameter : 8mm,10mm , 12mm , 16mm , 20mm , 22mm , 24mm , 32mm , 36mm,38mm , 42mm ……
3V ,5V ,9V , 12V ,24V offered .

Planetary Gearbox rewards:

  1. Supplies higher torque at gradual speeds .
  2. The shafts are produced up of hardened and tempered alloy metal .
  3. Solar gears ,world gears and ring gears are created of powder metallurgy and sintering metal .
  4. Minimal noise ranges.
  5. Good good quality taper roller bearings for enter and output shafts .High efficiency .
  6. Increased repeatability . Its  Its greater pace radial and axial load offers trustworthiness and robustness, minimizing the misalignment of the equipment. In addition, uniform transmission and low vibrations at distinct hundreds give a excellent repeatability.
  7. Perfect precision: Most rotating angular steadiness increases the precision and dependability of the motion.
  8. Reduce sounds amount simply because there is much more floor contact. Rolling is much softer and jumps are nearly nonexistent.
  9. Greater toughness: Due to its torsional rigidity and better rolling. To enhance this characteristic, your bearings assist minimize the losses that would arise by rubbing the shaft on the box right. Hence, higher effectiveness of the equipment and a much smoother procedure is attained.
  10. Enhanced torque transmission: With a lot more enamel in get in touch with, the mechanism is CZPT to transmit and stand up to far more torque. In addition, it does it in a much more uniform way.
  11. Really very good amounts of effectiveness: Planetary reducers offer increased efficiency and thanks to its layout and interior format losses are minimized throughout their perform. In reality, today, this type of drive mechanisms are these that offer you increased performance.
  12. Greatest flexibility: Its system is contained in a cylindrical gearbox, which can be put in in almost any area

Geared Motor Software:
conditioning damper actuator,retractable rearview mirror,Auto tail gate electric putter,vehicle water pump,auto antenna, door lock actuator, electric drill,monitor,  window curtain,coffee device, tooth brush,stitching equipment.

Software:
 Car antenna,Car tail gate electric putter,vehicle drinking water pump, door lock actuator, automatic cruise handle, window curtain,  vacuum cleaner, camera,  electric shaver, coffeemaker , stitching equipment,keep an eye on,computerized vending equipment,Healthcare cleaning pump, ride-on toy.

PM process for customized metal planetary gearbox , geared motors .
The P/M procedure is an affordable, environmentally clean, substantial manufacturing strategy for making components specifically to or close to last dimensions.  With little or no machining functions required.
At current, areas with a complicated form, restricted-dimensional tolerances, controlled density and homes can be produced by powder metallurgy methods. A technological process of powder metallurgy makes certain substantial flexibility in the assortment of physiochemical houses and other demands, which includes:

  1. Generation of structural parts with complex shapes .
  2. Controlled porosity .
  3. Substantial mechanical power and resistance to vibrations .
  4. Managed homes.
  5. Large mechanical strength and resistance to vibrations.
  6. Substantial production precision and excellent surface area high quality
  7. Big amount of generation sequence .
  8. Very good tolerances .

Personalized metal elements

 

Workshop

US $2.5
/ Piece
|
2,000 Pieces

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step

###

Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
US $2.5
/ Piece
|
2,000 Pieces

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step

###

Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China 20mm Sintering Metal Planetary Gearbox 3V-24V Brush / Brushless / Stepper Gear Motor     with Good qualityChina 20mm Sintering Metal Planetary Gearbox 3V-24V Brush / Brushless / Stepper Gear Motor     with Good quality
editor by czh 2022-12-25

China OEM Factory Sells Jk42hsp Planetary Gearbox Stepper Motor 42mm for Low Price wholesaler

Product Description

JK42HSP Plantary Gearbox Stgepping Motor 42mm 

Specification:

 

Drawing:

 

Speed: Low Speed
Number of Stator: Two-Phase
Certification: ISO9001, Ce RoHS
Brand: Jkongmotor
Transport Package: Export Carton
Origin: China

###

Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Speed: Low Speed
Number of Stator: Two-Phase
Certification: ISO9001, Ce RoHS
Brand: Jkongmotor
Transport Package: Export Carton
Origin: China

###

Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

Benefits of a Planetary Motor

A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Motor

Self-centering planet gears ensure a symmetrical force distribution

A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.

Metal gears

A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.

Durability

One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Motor

Cost

The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.

China OEM Factory Sells Jk42hsp Planetary Gearbox Stepper Motor 42mm for Low Price     wholesaler China OEM Factory Sells Jk42hsp Planetary Gearbox Stepper Motor 42mm for Low Price     wholesaler
editor by czh 2022-12-02

China Industrial NEMA17 2-Phase Hybrid Stepper Gear Motor Electric Motor with Planetary Gearbox motor brushes

Product Description

Product Description

Stepper Motor Description

High Torque 
High Accuracy 
Smooth Movement; 
 
Stepper motors, AC servo motors and brushless dc motors are avaiable to customized for the world, NEMA 11, 14, 16, 17, 23, 24, 34 stepper motor, 50W, 100W, 200W, 400W, 500W, 750W, 1000W, 1200W AC servo motor, and brushless dc motor are all included. 
 
The derived products are widely used in ATM machines, digital scanners, stylus printers, plotters, slot machines, CD-ROM drivers, stage lighting, camera lenses, CNC machines, medical machines, 3D printers, cleaning machines and quadcopter for industry and our life.
 
All the derived products of us can be customized for your needs; 

 

Product Parameters

Motor Technical Specification

Flange

NEMA 17

Step angle

1.8 [°] ± 5 [%]

Phase resistance

1.35 [Ohm] ± 0.1 [%]

Phase inductance

3.2 [mH] ± 20 [%]

Rotor inertia

77 [g.cm²]

Ambient temperature

-20 [°C] ~ +50 [°C]

Temperature rise

80 [K]

Dielectric strength

500 [VAC 1 Minute]

Class protection

IP20

Max. shaft radial load

75 [N]

Max. shaft axial load

15 [N]

Weight

360 [g.]

 

Mechanical Drawing (in mm)

 

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
OPEN LOOP STEP MOTOR
Nema8 EW08-210H 37.8 1.80  1.00  4.30  1.70  0.04min 4.00  2.90 
Nema11 EW11-110 30.1 1.80  1.00  4.50  3.80  0.08min 4.00  5.00 
EW11-110H 30.1 1.80  1.00  4.50  4.00  0.07min 4.00  9.00 
EW11-310 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
Nema14 EW14-110 25.5 1.80  1.00  3.30  3.80  0.17min 4.00  25.00 
EW14-210 40.5 1.80  1.00  4.00  6.10  0.2min 4.00  25.00 
Nema17 EW17-220 33.7 1.80  2.00  0.70  1.40  0.3min 4.00  40.00 
EW17-320 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-320D 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-420 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420D 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420M 80.1 1.80  2.00  1.35  3.20  0.48min 4.00  77.00 
EW17-520 60 1.80  2.00  1.35  2.90  0.70min 4.00  115.00 
EW17-520M 99.1 1.80  2.00  1.77  4.00  0.72min 4.00  110.00 
Nema23 EW23-140 41.9 1.80  4.00  0.37  1.00  0.70min 4.00  170.00 
EW23-240 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240D 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  0.44  1.40  1.20min 4.00  480.00 
EW23-340 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-340D 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-350M 116.5 1.80  5.00  0.40  1.80  2.00min 4.00  480.00 
Nema24 EW24-240 54.5 1.80  4.00  0.45  1.20  1.40min 4.00  450.00 
EW24-440 85.5 1.80  4.00  0.80  3.00  3.00min 4.00  900.00 
EW24-450M 125.6 1.80  5.00  0.42  1.80  3.00min 4.00  900.00 
Nema34 EW34-260 79.5 1.80  6.00  0.38  2.80  4.5min 4.00  1900.00 
EW34-360 99 1.80  6.00  0.47  3.90  6.00min 4.00  2700.00 
EW34-460M 155.3 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
EW34-560 129 1.80  6.00  0.64  6.00  9.00min 4.00  4000.00 
EW34-660 159.5 1.80  6.00  0.72  7.30  12min. 4.00  5000.00 
EH34-530 129 1.80  3.60  1.06  10.00  7.1min 4.00  4000.00 

 

 

 

 

 

 

 

Company Profile

     Taking advantage of the proactive climate of the 70s, in 1977 the engineer Felice Caldi, who had always been a passionate builder and inventor, founded an innovative company, operating internationally in the field of software for industrial machinery.
Since then, this small company based in Lodi has enjoyed continuous successes related to innovative products and cutting edge “best in class” technologies in the field of industrial automation, as proven by the many patents filed during the years as well as the important awards given to it by the Chamber of Commerce of Milan and of the Lombardy Region.
    The company, thanks to its successes over time, has grown considerably, expanding its sales network abroad and opening another company in China to manage the sales flow in the Asian market. 
    Ever attentive to the dynamics and needs of the automation market, constantly evolving and continually seeking technological innovation, Ever Elettronica has been CZPT to respond to all the technological challenges that have arisen over the years, providing solutions CZPT to make its customer’s machines more and more performing and highly competitive.
    And it is precisely to underline the importance and the uniqueness of every single customer that we design, with care and dedication, highly customised automation solutions, that are CZPT to perfectly meet any request, both regarding software and hardware.
    Our team of mechatronic engineers can indeed customise the software with specially designed firmware, and it can also adapt the motor by customising, for example, the length of the cables or the diameter of the crankshaft and the IP protection degree, all strictly based on the customer’s technical specifications.

 

 

 

US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2
Current / Phase: 2.0 [a/pH]

###

Customization:

###

Flange
NEMA 17
Step angle
1.8 [°] ± 5 [%]
Phase resistance
1.35 [Ohm] ± 0.1 [%]
Phase inductance
3.2 [mH] ± 20 [%]
Rotor inertia
77 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
80 [K]
Dielectric strength
500 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
75 [N]
Max. shaft axial load
15 [N]
Weight
360 [g.]

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
OPEN LOOP STEP MOTOR
Nema8 EW08-210H 37.8 1.80  1.00  4.30  1.70  0.04min 4.00  2.90 
Nema11 EW11-110 30.1 1.80  1.00  4.50  3.80  0.08min 4.00  5.00 
EW11-110H 30.1 1.80  1.00  4.50  4.00  0.07min 4.00  9.00 
EW11-310 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
Nema14 EW14-110 25.5 1.80  1.00  3.30  3.80  0.17min 4.00  25.00 
EW14-210 40.5 1.80  1.00  4.00  6.10  0.2min 4.00  25.00 
Nema17 EW17-220 33.7 1.80  2.00  0.70  1.40  0.3min 4.00  40.00 
EW17-320 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-320D 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-420 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420D 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420M 80.1 1.80  2.00  1.35  3.20  0.48min 4.00  77.00 
EW17-520 60 1.80  2.00  1.35  2.90  0.70min 4.00  115.00 
EW17-520M 99.1 1.80  2.00  1.77  4.00  0.72min 4.00  110.00 
Nema23 EW23-140 41.9 1.80  4.00  0.37  1.00  0.70min 4.00  170.00 
EW23-240 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240D 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  0.44  1.40  1.20min 4.00  480.00 
EW23-340 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-340D 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-350M 116.5 1.80  5.00  0.40  1.80  2.00min 4.00  480.00 
Nema24 EW24-240 54.5 1.80  4.00  0.45  1.20  1.40min 4.00  450.00 
EW24-440 85.5 1.80  4.00  0.80  3.00  3.00min 4.00  900.00 
EW24-450M 125.6 1.80  5.00  0.42  1.80  3.00min 4.00  900.00 
Nema34 EW34-260 79.5 1.80  6.00  0.38  2.80  4.5min 4.00  1900.00 
EW34-360 99 1.80  6.00  0.47  3.90  6.00min 4.00  2700.00 
EW34-460M 155.3 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
EW34-560 129 1.80  6.00  0.64  6.00  9.00min 4.00  4000.00 
EW34-660 159.5 1.80  6.00  0.72  7.30  12min. 4.00  5000.00 
EH34-530 129 1.80  3.60  1.06  10.00  7.1min 4.00  4000.00 
US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2
Current / Phase: 2.0 [a/pH]

###

Customization:

###

Flange
NEMA 17
Step angle
1.8 [°] ± 5 [%]
Phase resistance
1.35 [Ohm] ± 0.1 [%]
Phase inductance
3.2 [mH] ± 20 [%]
Rotor inertia
77 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
80 [K]
Dielectric strength
500 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
75 [N]
Max. shaft axial load
15 [N]
Weight
360 [g.]

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
OPEN LOOP STEP MOTOR
Nema8 EW08-210H 37.8 1.80  1.00  4.30  1.70  0.04min 4.00  2.90 
Nema11 EW11-110 30.1 1.80  1.00  4.50  3.80  0.08min 4.00  5.00 
EW11-110H 30.1 1.80  1.00  4.50  4.00  0.07min 4.00  9.00 
EW11-310 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
Nema14 EW14-110 25.5 1.80  1.00  3.30  3.80  0.17min 4.00  25.00 
EW14-210 40.5 1.80  1.00  4.00  6.10  0.2min 4.00  25.00 
Nema17 EW17-220 33.7 1.80  2.00  0.70  1.40  0.3min 4.00  40.00 
EW17-320 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-320D 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-420 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420D 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420M 80.1 1.80  2.00  1.35  3.20  0.48min 4.00  77.00 
EW17-520 60 1.80  2.00  1.35  2.90  0.70min 4.00  115.00 
EW17-520M 99.1 1.80  2.00  1.77  4.00  0.72min 4.00  110.00 
Nema23 EW23-140 41.9 1.80  4.00  0.37  1.00  0.70min 4.00  170.00 
EW23-240 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240D 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  0.44  1.40  1.20min 4.00  480.00 
EW23-340 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-340D 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-350M 116.5 1.80  5.00  0.40  1.80  2.00min 4.00  480.00 
Nema24 EW24-240 54.5 1.80  4.00  0.45  1.20  1.40min 4.00  450.00 
EW24-440 85.5 1.80  4.00  0.80  3.00  3.00min 4.00  900.00 
EW24-450M 125.6 1.80  5.00  0.42  1.80  3.00min 4.00  900.00 
Nema34 EW34-260 79.5 1.80  6.00  0.38  2.80  4.5min 4.00  1900.00 
EW34-360 99 1.80  6.00  0.47  3.90  6.00min 4.00  2700.00 
EW34-460M 155.3 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
EW34-560 129 1.80  6.00  0.64  6.00  9.00min 4.00  4000.00 
EW34-660 159.5 1.80  6.00  0.72  7.30  12min. 4.00  5000.00 
EH34-530 129 1.80  3.60  1.06  10.00  7.1min 4.00  4000.00 

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Industrial NEMA17 2-Phase Hybrid Stepper Gear Motor Electric Motor with Planetary Gearbox     motor brushesChina Industrial NEMA17 2-Phase Hybrid Stepper Gear Motor Electric Motor with Planetary Gearbox     motor brushes
editor by czh 2022-11-28

China Jk86hsplf 86mm Precision Planetary Gearbox Stepper Motor Reducer NEMA 34 with Hot selling

Product Description

 Planetary Gearbox Stepping Motor 86mm

Specification:

GenHangZhou Specification:

Housing Material       Metal
 Bearing at Output   Ball Bearings
(12mm)Max.Radial Load(12mm from flange)  ≤550N
Max.Shaft Axial Load ≤500N
Efficiency with full load  % >90%
  Average lifetime    Hour >10000

Electrical Specifications:
 

Model No. Step Angle Motor Length Current
/Phase
Resistance
/Phase
Inductance
/Phase
Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm Kg
JK86HS68-3004 1.8 68 3.0 1.2 7.1 3.5 4 0.8 1000 1.7
JK86HS68-2808 1.8 68 2.8 1.4 3.9 2.4 8 0.8 1000 1.7
JK86HS78-5504 1.8 78 5.5 0.46 4 4.6 4 1.2 1400 2.3
JK86HS78-4208 1.8 78 4.2 0.75 3.4 4.6 8 1.2 1400 2.3
JK86HS115-6004 1.8 115 6.0 0.6 6.5 8.7 4 2.4 2700 3.8
JK86HS115-4208 1.8 115 4.2 0.9 6 8.7 8 2.4 2700 3.8
JK86HS155-6204 1.8 155 6.2 0.75 9 12.2 4 3.6 4000 5.4
JK86HS155-4208 1.8 155 4.2 1.25 8 12.2 8 3.6 4000 5.4

Gearbox Electrical Specificati

Stage One stage Two stage Three stage
Ratio                3,4,5,8,10 12,15,16,20,25,32,40,64,100 64,80,100,120,125,160,200,256,320,512,1000
Length (mm) L2 L3 L2 L3 L2 L3
153 65 177 89 201 113
Max.Input Rpm (Rpm) 6000 6000 6000
Max.Radial load (N) 550 550 550
Max.Shaft axial load (N) 500 500 500

         Efficiency (%) 96 94 90
     Backlash arcmin (arcmin) ≤8 ≤10 ≤12
         Noise (dB) ≤60 ≤60 ≤60
         Weight (Kg) 3.2 3.9 4.8
     Average usefui life (h) >10000
     Lubricating system   Long-term
     Rotation direction   Input/Output syntropy
     Protection level     IP65

Drawing:

1. who are we?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

3.what can you buy from us?

Always a pre-production sample before mass production;
Always final Inspection before shipment;

4. why should you buy from us not from other suppliers?

Professional one-to-1 motor customized . The world’s large enterprise of choice for high quality suppliers . ISO9001:2008 quality management system certification, through the CE, ROHS certification.

5. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,CAD,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese

 

Speed: Low Speed
Number of Stator: Two-Phase
Certification: ISO9001, Ce RoHS
Brand: Jkongmotor
Transport Package: Export Carton
Origin: China

###

Samples:
US$ 120/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Housing Material       Metal
 Bearing at Output   Ball Bearings
(12mm)Max.Radial Load(12mm from flange)  550N
Max.Shaft Axial Load 500N
Efficiency with full load  % >90%
  Average lifetime    Hour >10000

###

Model No. Step Angle Motor Length Current
/Phase
Resistance
/Phase
Inductance
/Phase
Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm Kg
JK86HS68-3004 1.8 68 3.0 1.2 7.1 3.5 4 0.8 1000 1.7
JK86HS68-2808 1.8 68 2.8 1.4 3.9 2.4 8 0.8 1000 1.7
JK86HS78-5504 1.8 78 5.5 0.46 4 4.6 4 1.2 1400 2.3
JK86HS78-4208 1.8 78 4.2 0.75 3.4 4.6 8 1.2 1400 2.3
JK86HS115-6004 1.8 115 6.0 0.6 6.5 8.7 4 2.4 2700 3.8
JK86HS115-4208 1.8 115 4.2 0.9 6 8.7 8 2.4 2700 3.8
JK86HS155-6204 1.8 155 6.2 0.75 9 12.2 4 3.6 4000 5.4
JK86HS155-4208 1.8 155 4.2 1.25 8 12.2 8 3.6 4000 5.4

###

Stage One stage Two stage Three stage
Ratio                3,4,5,8,10 12,15,16,20,25,32,40,64,100 64,80,100,120,125,160,200,256,320,512,1000
Length (mm) L2 L3 L2 L3 L2 L3
153 65 177 89 201 113
Max.Input Rpm (Rpm) 6000 6000 6000
Max.Radial load (N) 550 550 550
Max.Shaft axial load (N) 500 500 500

###

         Efficiency (%) 96 94 90
     Backlash arcmin (arcmin) ≤8 ≤10 ≤12
         Noise (dB) ≤60 ≤60 ≤60
         Weight (Kg) 3.2 3.9 4.8
     Average usefui life (h) >10000
     Lubricating system   Long-term
     Rotation direction   Input/Output syntropy
     Protection level     IP65
Speed: Low Speed
Number of Stator: Two-Phase
Certification: ISO9001, Ce RoHS
Brand: Jkongmotor
Transport Package: Export Carton
Origin: China

###

Samples:
US$ 120/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Housing Material       Metal
 Bearing at Output   Ball Bearings
(12mm)Max.Radial Load(12mm from flange)  550N
Max.Shaft Axial Load 500N
Efficiency with full load  % >90%
  Average lifetime    Hour >10000

###

Model No. Step Angle Motor Length Current
/Phase
Resistance
/Phase
Inductance
/Phase
Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm Kg
JK86HS68-3004 1.8 68 3.0 1.2 7.1 3.5 4 0.8 1000 1.7
JK86HS68-2808 1.8 68 2.8 1.4 3.9 2.4 8 0.8 1000 1.7
JK86HS78-5504 1.8 78 5.5 0.46 4 4.6 4 1.2 1400 2.3
JK86HS78-4208 1.8 78 4.2 0.75 3.4 4.6 8 1.2 1400 2.3
JK86HS115-6004 1.8 115 6.0 0.6 6.5 8.7 4 2.4 2700 3.8
JK86HS115-4208 1.8 115 4.2 0.9 6 8.7 8 2.4 2700 3.8
JK86HS155-6204 1.8 155 6.2 0.75 9 12.2 4 3.6 4000 5.4
JK86HS155-4208 1.8 155 4.2 1.25 8 12.2 8 3.6 4000 5.4

###

Stage One stage Two stage Three stage
Ratio                3,4,5,8,10 12,15,16,20,25,32,40,64,100 64,80,100,120,125,160,200,256,320,512,1000
Length (mm) L2 L3 L2 L3 L2 L3
153 65 177 89 201 113
Max.Input Rpm (Rpm) 6000 6000 6000
Max.Radial load (N) 550 550 550
Max.Shaft axial load (N) 500 500 500

###

         Efficiency (%) 96 94 90
     Backlash arcmin (arcmin) ≤8 ≤10 ≤12
         Noise (dB) ≤60 ≤60 ≤60
         Weight (Kg) 3.2 3.9 4.8
     Average usefui life (h) >10000
     Lubricating system   Long-term
     Rotation direction   Input/Output syntropy
     Protection level     IP65

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Jk86hsplf 86mm Precision Planetary Gearbox Stepper Motor Reducer NEMA 34     with Hot selling	China Jk86hsplf 86mm Precision Planetary Gearbox Stepper Motor Reducer NEMA 34     with Hot selling
editor by czh 2022-11-25

China NEMA 8, 11, 14, 16, 17, 23, 34, 43 Electric Stepping Stepper Gear Motor with Planetary Gearbox motor engine

Product Description

Stepper Gear Motor

• Manufacturer Part Number: HP201 HP281 HP351 HP421
• Motor Type: Planetary Gearbox Stepper Motor Bipolar 4 Wires 2 Phase 
• Frame Size: 20x20mm Geared Stepper Motor Nema 8, NEMA 11, NEMA14, NEMA17 Mounting
• Step Angle: 1.8deg, 0.9deg, 0.36deg
• Gearbox Effiency: 66%—90% 
• Application: 3D Printer motor, Medical Equipment Motor, Ventilator motor

Drawing of NEMA 8 Hybrid Stepper Gear Motor:

Drawing of NEMA 11 Hybrid Stepper Gear Motor:

Drawing of NEMA 14 Hybrid Stepper Gear Motor:

Drawing of NEMA 17 Hybrid Stepper Gear Motor:

Drawing of NEMA 23 Stepping Motor

Drawing of NEMA 34 Step Engine

NEMA 8 Hybrid Stepper Gear Motor
 

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP201-57121 1.8 28 0.2 23 8.2 1.4 0.2 4 50
HP201-57121 1.8 34 0.2 25 8.4 1.8 0.3 4 70
HP201-0 0571 1 1.8 40 0.2 32 8.8 2.6 0.5 4 82
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

 

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
( mm)
22.4 33.0 41.5 49.8
Allowable Torque
(Kg.cm)
6 10 16 20
Instantaneous Torque
(Kg.cm)
18 30 48 60
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
35 45 55 65
We can manufacture products according to customer’s requirements

NEMA 11 Hybrid Stepper Gear Motor
 

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP281-00506 1.8 28 0.6 4.2 2.2 4.5 0.3 4 105
HP281-00606 1.8 33 0.6 5.5 3.2 6.0 0.4 4 110
HP281-00806 1.8 41 0.6 7.0 6.0 8.0 0.5 4 140
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

 

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

NEMA 14 Hybrid Stepper Gear Motor
 

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP351-01205 1.8 28 0.46 20 14 12 0.8 4 120
HP351-01804 1.8 34 0.42 25 32 18 1.0 4 160
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

 

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139
Reducer Series 1 2 3
Length
(mm)
31.0 38.5 48.2
Allowable Torque
(Kg.cm)
18 30 48
Instantaneous Torque
(Kg.cm)
54 90 144
Efficiency
(%)
90% 81% 73%
Weight
(g)
195 210 290
 

NEMA 17 Hybrid Stepper Gear Motor
 

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP421-01206 1.8 28 0.6 8 10 12 1.6 4 150
HP421-57117 1.8 34 1.7 1.2 1.8 28 1.6 4 220
HP421-04013 1.8 40 1.3 2.5 5.0 40 2.2 4 280
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

 

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

NEMA 34 Hybrid Stepper Motor
 

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H863-18040 1.8 63 4.0 0.68 2.0 180 4.5 8 1.6
H863-18050 1.8 63 5.0 0.45 1.5 180 4.5 8 1.6
H863-18571 1.8 63 2.7 1.2 4.5 180 4.5 8 1.6
H863-18571 1.8 63 2.1 1.9 7.2 180 4.5 8 1.6
H863-32040 1.8 92 4.0 0.89 3.8 320 6.5 8 2.6
H863-32050 1.8 92 5.0 0.58 2.8 320 6.5 8 2.6
H863-32571 1.8 92 2.7 1.7 9.0 320 6.5 8 2.6
H863-32571 1.8 92 2.1 2.7 15 320 6.5 8 2.6
H863-45040 1.8 122 4.0 1.1 5.6 450 10.5 8 3.8
H863-45050 1.8 122 5.0 0.82 3.6 450 10.5 8 3.8
H863-45571 1.8 122 2.7 2.5 12.5 450 10.5 8 3.8

NEMA 43 Hybrid Stepper Motor
 

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N. m)
Detent Torque (N. cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H1101- 01260 1.8 100 6.0 0.5 6.0 12 20.5 4 5.0
H1101-01560 1.8 117 6.0 0.47 7.5 15 24.5 4 5.8
H1101-01860 1.8 126 6.0 0.66 10.5 18 21.5 4 6.8
H1101-57160 1.8 150 6.0 0.8 13.5 22 35.5 4 8.4
H1101-02660 1.8 165 6.0 0.87 16.0 26 45.5 4 9.3
H1101-57160 1.8 200 6.0 1.1 22 29 65.5 4 13.0
H1101-57180 1.8 200 8.0 0.62 13.5 29 65.5 4 13.0

Factory Ability
I.CH Motion Co., Ltd., established in 2006, and our main products are hybrid stepper motor, stepping motor driver, step engine, stepping engine, integrated step servo motors,  Our products are widely used and applied in the following industries: lighting system, projector, CNC, emiconductor, textile, laser, woodworking, printing, advertising, clothing, marble and ceramic, robotics.

Advantages
1. Short Lead-Time;
2. 0.1% defect rate and;
3. 1 – 2 year guarantee period;
    

Package
-Pack by PE foam in cartons, crates and pallets;
-Shipping via sea, air, courier;
-Lead-time: 3-8 weeks.

We can also supply below products,
      

FAQ
Q1. What phase is this stepping motor?
A: It is 2 phase with 1.8deg.
 
Q2. What is frame size for NEMA 8 Step Geared motor?
A: It is 20mm*20mm size.
 
Q3. I need a non-standard motor for my application, can you help?
A: Certainly, most of our customers request custom configurations in 1 form or another. If you plan on replacing a motor in an existing application, just send us a drawing or sample and we can help you find a suitable replacement. Alternatively, contact us and describe your application, our engineers will work with you to create a solution tailor-made for you.

Q4:How can I get your quotation of electrical step engine?
A:Please send us the details of the stepper motors you are in need of, also includes the quantity. 

Q. What are your Stepper Motors can be use to?
A: Our step motors can be use in CNC routers, CNC milling machine, engraving machine, packaging machine, filling machine, cutting machine, printing machine, laser machine, carving machine, labeling machine, CCTV and robot.
 
Q. What kind of Payment methods do you accept?
A: We can accept Paypal and , TT.
 
Q: What kind of shipping methods do you use?
A:1) For samples or small batch of micro stepper motor, air shipping is recommended. (DHL, Fedex, TNT, UPS, EMS), We will provide the tracking No. Once we get it after we ship out the products. 
2)For mass production or big batch of stepping motors, CZPT shipping/sea shipment is recommended . 
 
Q: What is the lead time of stepper motors?
A: For mass production, the lead time depends on the quantities you need .
 
Q: What is your warranty time?
A: Warranty time: 12 months. And we provide life-long technical service and after-sale service.
 
Q: Can you make customized shaft?
A: We can make single shaft, double shaft or other shape.
 
Q: What is NEMA size of this motor?
A: It is NEMA 8 with 1.8 degree or 0.9 degree.

Q: What it the application for NEMA 8 StepperGeared Motor
A: It could used as 3D Printer motor. 

US $10
/ Piece
|
100 Pieces

(Min. Order)

###

Application: Printing Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control
Number of Poles: 2

###

Customization:

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP201-001021 1.8 28 0.2 23 8.2 1.4 0.2 4 50
HP201-002021 1.8 34 0.2 25 8.4 1.8 0.3 4 70
HP201-003021 1.8 40 0.2 32 8.8 2.6 0.5 4 82
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
( mm)
22.4 33.0 41.5 49.8
Allowable Torque
(Kg.cm)
6 10 16 20
Instantaneous Torque
(Kg.cm)
18 30 48 60
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
35 45 55 65
We can manufacture products according to customer’s requirements

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP281-00506 1.8 28 0.6 4.2 2.2 4.5 0.3 4 105
HP281-00606 1.8 33 0.6 5.5 3.2 6.0 0.4 4 110
HP281-00806 1.8 41 0.6 7.0 6.0 8.0 0.5 4 140
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP351-01205 1.8 28 0.46 20 14 12 0.8 4 120
HP351-01804 1.8 34 0.42 25 32 18 1.0 4 160
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139
Reducer Series 1 2 3
Length
(mm)
31.0 38.5 48.2
Allowable Torque
(Kg.cm)
18 30 48
Instantaneous Torque
(Kg.cm)
54 90 144
Efficiency
(%)
90% 81% 73%
Weight
(g)
195 210 290
 

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP421-01206 1.8 28 0.6 8 10 12 1.6 4 150
HP421-02817 1.8 34 1.7 1.2 1.8 28 1.6 4 220
HP421-04013 1.8 40 1.3 2.5 5.0 40 2.2 4 280
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

###

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H863-18040 1.8 63 4.0 0.68 2.0 180 4.5 8 1.6
H863-18050 1.8 63 5.0 0.45 1.5 180 4.5 8 1.6
H863-18027 1.8 63 2.7 1.2 4.5 180 4.5 8 1.6
H863-18021 1.8 63 2.1 1.9 7.2 180 4.5 8 1.6
H863-32040 1.8 92 4.0 0.89 3.8 320 6.5 8 2.6
H863-32050 1.8 92 5.0 0.58 2.8 320 6.5 8 2.6
H863-32027 1.8 92 2.7 1.7 9.0 320 6.5 8 2.6
H863-32021 1.8 92 2.1 2.7 15 320 6.5 8 2.6
H863-45040 1.8 122 4.0 1.1 5.6 450 10.5 8 3.8
H863-45050 1.8 122 5.0 0.82 3.6 450 10.5 8 3.8
H863-45027 1.8 122 2.7 2.5 12.5 450 10.5 8 3.8

###

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N. m)
Detent Torque (N. cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H1101- 01260 1.8 100 6.0 0.5 6.0 12 20.5 4 5.0
H1101-01560 1.8 117 6.0 0.47 7.5 15 24.5 4 5.8
H1101-01860 1.8 126 6.0 0.66 10.5 18 21.5 4 6.8
H1101-02260 1.8 150 6.0 0.8 13.5 22 35.5 4 8.4
H1101-02660 1.8 165 6.0 0.87 16.0 26 45.5 4 9.3
H1101-02960 1.8 200 6.0 1.1 22 29 65.5 4 13.0
H1101-02980 1.8 200 8.0 0.62 13.5 29 65.5 4 13.0
US $10
/ Piece
|
100 Pieces

(Min. Order)

###

Application: Printing Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control
Number of Poles: 2

###

Customization:

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP201-001021 1.8 28 0.2 23 8.2 1.4 0.2 4 50
HP201-002021 1.8 34 0.2 25 8.4 1.8 0.3 4 70
HP201-003021 1.8 40 0.2 32 8.8 2.6 0.5 4 82
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
( mm)
22.4 33.0 41.5 49.8
Allowable Torque
(Kg.cm)
6 10 16 20
Instantaneous Torque
(Kg.cm)
18 30 48 60
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
35 45 55 65
We can manufacture products according to customer’s requirements

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP281-00506 1.8 28 0.6 4.2 2.2 4.5 0.3 4 105
HP281-00606 1.8 33 0.6 5.5 3.2 6.0 0.4 4 110
HP281-00806 1.8 41 0.6 7.0 6.0 8.0 0.5 4 140
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP351-01205 1.8 28 0.46 20 14 12 0.8 4 120
HP351-01804 1.8 34 0.42 25 32 18 1.0 4 160
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139
Reducer Series 1 2 3
Length
(mm)
31.0 38.5 48.2
Allowable Torque
(Kg.cm)
18 30 48
Instantaneous Torque
(Kg.cm)
54 90 144
Efficiency
(%)
90% 81% 73%
Weight
(g)
195 210 290
 

###

Motor Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( g)
HP421-01206 1.8 28 0.6 8 10 12 1.6 4 150
HP421-02817 1.8 34 1.7 1.2 1.8 28 1.6 4 220
HP421-04013 1.8 40 1.3 2.5 5.0 40 2.2 4 280
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web

###

Gearbox Specification
Ratio 3.71 5.18 14 19 27 51 71 100 139 189 264 369
Reducer Series 1 2 3 4
Length
(mm)
31.0 40.1 49.0 57.9
Allowable Torque
(Kg.cm)
12 20 32 40
Instantaneous Torque
(Kg.cm)
36 60 96 120
Efficiency
(%)
90% 81% 73% 66%
Weight
(g)
60 85 95 110
We can manufacture products according to customer’s requirements

###

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N.cm)
Detent Torque (N.cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H863-18040 1.8 63 4.0 0.68 2.0 180 4.5 8 1.6
H863-18050 1.8 63 5.0 0.45 1.5 180 4.5 8 1.6
H863-18027 1.8 63 2.7 1.2 4.5 180 4.5 8 1.6
H863-18021 1.8 63 2.1 1.9 7.2 180 4.5 8 1.6
H863-32040 1.8 92 4.0 0.89 3.8 320 6.5 8 2.6
H863-32050 1.8 92 5.0 0.58 2.8 320 6.5 8 2.6
H863-32027 1.8 92 2.7 1.7 9.0 320 6.5 8 2.6
H863-32021 1.8 92 2.1 2.7 15 320 6.5 8 2.6
H863-45040 1.8 122 4.0 1.1 5.6 450 10.5 8 3.8
H863-45050 1.8 122 5.0 0.82 3.6 450 10.5 8 3.8
H863-45027 1.8 122 2.7 2.5 12.5 450 10.5 8 3.8

###

Electrical Specification
Series Model Step Angle ( o ) L
(mm)
Rated Current (A) Phase
Resistance
(Ω)
Phase
Inductance  (mH)
Holding Torque
(N. m)
Detent Torque (N. cm) Lead
Wire
(NO.)
Motor
Weight
( kg)
H1101- 01260 1.8 100 6.0 0.5 6.0 12 20.5 4 5.0
H1101-01560 1.8 117 6.0 0.47 7.5 15 24.5 4 5.8
H1101-01860 1.8 126 6.0 0.66 10.5 18 21.5 4 6.8
H1101-02260 1.8 150 6.0 0.8 13.5 22 35.5 4 8.4
H1101-02660 1.8 165 6.0 0.87 16.0 26 45.5 4 9.3
H1101-02960 1.8 200 6.0 1.1 22 29 65.5 4 13.0
H1101-02980 1.8 200 8.0 0.62 13.5 29 65.5 4 13.0

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China NEMA 8, 11, 14, 16, 17, 23, 34, 43 Electric Stepping Stepper Gear Motor with Planetary Gearbox     motor engine	China NEMA 8, 11, 14, 16, 17, 23, 34, 43 Electric Stepping Stepper Gear Motor with Planetary Gearbox     motor engine
editor by czh